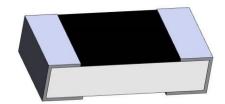


1/32W, 01005, High Precision Thick Film Chip Resistor (Lead / Halogen Free)

Reversion History:

Date	Revision	Changes
2021.08.17	A0	New Approval
2022.02.08	A1	 Delete Jumper TCR X specification , Change into resistor refer to paragraph 2 , Electrical Specifications Power rating change into resistor refer to paragraph 2 , Electrical Specifications


REVISION: A1

1/32W, 01005, High Precision Thick Film Chip Resistor (Lead / Halogen Free)

Features / Applications :

- Telecommunication Equipment, Digital Cameras,
 Watches, Pocket Calculators, Computers, Instruments.
- Halogen Free Epoxy
- RoHS compliant
- No RoHS exemption

Electrical Specifications:

Power Rating*	Resistance Values Series	Resistance Tolerance	$\begin{array}{c} \text{Resistance} \\ \text{Range } (\Omega) \\ \end{array} \begin{array}{c} \text{Temperature} \\ \text{Coefficient of} \\ \text{Resistance} \\ \text{ppm /°C (Code)} \\ \end{array}$		Operating Temperature Range	Max. Operating Voltage**
	E24 series & E96 series	± 1.0% (F)	1.0~9.76	+600~-200		
			10~91	± 300		15V
1/32W			100∼1.62M	± 200	55°C +- 435°C	
	E24 series	± 5.0% (J)	1.0~9.1	+600~-200	-55℃ to 125℃	
			10~91	± 300		
			100∼2M	± 200		
Resistance		Rated current		Operating Temperature Range		
Jumper	Below 50 mΩ		0.5A		-55°C to 125°C	

Note: *Package Power Temperature Derating Curve

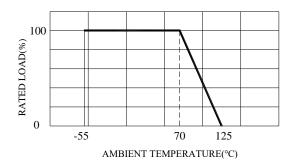


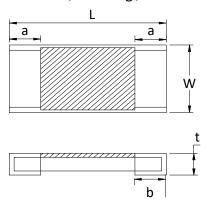
Figure 1. : Power Temperature Derating Curve

Note: **Resistors shall have a rated DC or AC(rms.) continuous operating voltage corresponding to the power rating, as calculated from the following formula

$$V = \sqrt{P \times R}$$
 Where V : Rated voltage (V)

P : Rated power (W)

R : Nominal resistance (Ω)


If the voltage so obtained exceeds the maximum operating voltage, this maximum voltage shall be the rated voltage.

Outline Drawing:

Dimensions

More than 10 Ω (including)

Code Letter	Dimension		
L	0.40 ± 0.02		
W	$\textbf{0.20} \pm \textbf{0.02}$		
t	0.13 ± 0.02		
а	0.10 ± 0.03		
b	0.10 ± 0.03		

Unit: mm

Just 1.0Ω \sim $9.76 \Omega \pm 1.0\%$ (F)

Which resistance layer (protection coating layer) is down.

Type Designation:

CRTF	Q	S	S	-	XXXX	-	Х
(1)	(2)	(3)	(4)		(5)		(6)

Note:

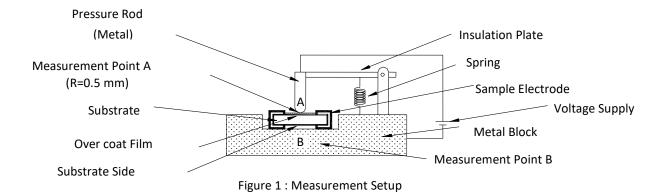
(1) Series No.

(2) Size(inch): Q=01005(0.2*0.4mm)

(3) TCR: Resistor refer to paragraph 2

(4) Power rating: Resistor refer to paragraph 2

(5) Resistance value : $103 = 10k\Omega$ (E24) ; $1131 = 1.13k\Omega$ (E96)


(6) Tolerance : D= $\pm 0.5\%$,F = $\pm 1\%$, J = $\pm 5\%$, X = Jumper (Below $50m\Omega$)

Characteristics:

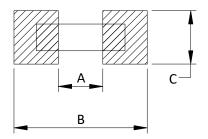
Electrical

lkova	Specification ar	nd Requirement	Test Method	
Item	Resistor	Jumper	(Refer to JIS C 5201)	
Short Time	\triangle R: \pm (2%+ 0.1 Ω) Max. 50m Ω		(1) Applied voltage :	
Overload	Without damage by		2.5 x rated voltage or	
	flashover, spark,		2 x maximum operating voltage	
	arcing, burning or		whichever is less	
	breakdown		(2) Test time : 5 seconds	
Insulation	Over 100 M Ω on Overcoat layer face up		(1) Setup as figure 2	
Resistance	Over 1,000 M Ω on Substrate side face up		(2) Test voltage : 100V _{DC}	
			(3) Test time :	
			60 + 10 / -0 seconds	
Voltage Proof	R: \pm (2%+ 0.1 Ω)	Max. $50 m\Omega$	(1) Setup as figure 2	
	Without damage by		(2) Test voltage : 50V _{AC} (rms.)	
	flashover, spark,		(3) Test time :	
	arcing, burning or		60 +10 / -0 seconds	
	breakdown			

DOCUMENT: CYRCQTQ REVISION: A1

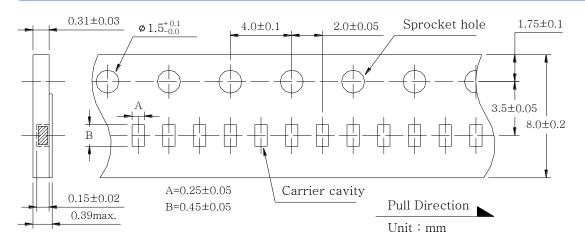
Mechanical

	Specification and Requ	irement	Test Method		
Item	Resistor	Jumper	(Refer to JIS C 5201)		
Solder ability	der ability The surface of terminal immersed shall be		Solder bath :		
	minimum of 95% covered wi	th a new	After immersing in flux, dip in 245 ± 5		
	coating of solder		$^{\circ}\text{C}$ molten solder bath for 2 \pm 0.5		
			seconds		
Resistance to Solder	Δ R: ± (1.0%+ 0.05Ω)	Max. $50 m\Omega$	(1) Pre-heat: 100~110°C for		
Heat	Without distinct		30 seconds		
	deformation in appearance		(2) Immersed at solder bath		
			of 270 ± 5°C for		
			10 \pm 1 seconds		
			(3) Measuring resistance		
			1 hour after test		
Vibration	Δ R: \pm (0.5%+ 0.05 Ω)		(1) Vibration frequency :		
	Without mechanical damage such as break		10Hz to 55Hz to10Hz in 60 seconds		
			as a period		
			(2) Vibration time : period cycled for		
			2 hours in each of 3 mutual		
			perpendicular directions		
			Amplitude : 1.5mm		
Shock	\triangle R: \pm (0.25%+ 0.05 Ω)		(1) Peak value : 490N		
	Without mechanical damage such as break		(2) Duration of pulse : 11ms		
			(3) 3 times in each positive and		
			negative direction of 3 mutual		
			perpendicular directions		
Bending Test	\triangle R: \pm (1.0%+ 0.05 Ω)		Bending value : 3 mm for		
	Without distinct		30 ± 1 seconds		
	damage in appearance				
Solvent Resistance	Without mechanical and	Max. $50 m\Omega$	(1) Solvent:		
	distinct damage in		Trichloroethane or Isopropyl alcohol		
	appearance		(2) Immersed in solvent at		
			room temperature for 90 seconds		

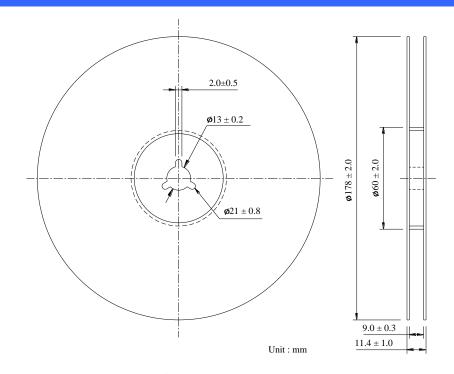

Endurance

lkana	Specification and Requirement		Test Method
Item	Resistor	Jumper	(Refer to JIS C 5201)
Thermal Shock	\triangle R: \pm (1.0%+ 0.05 Ω) Without distinct damage in appearance	Max. 50mΩ	 (1) Repeat 5 cycle as follows: (-55 ± 3°C,30minutes) → (Room temperature, 2~3 minutes) →(+125 ± 2°C,30minutes) →(Room temperature, 2~3 minutes) (2) Measuring resistance 1 hour after test
Moisture with Load	\triangle R: \pm (5.0%+ 0.1 Ω) Without distinct damage in appearance Marking should be legible	Max. 50mΩ	(1) Environment condition: 40± 2°C,90~95% RH (2) Applied Voltage: rated voltage (3) Test period: (1.5 hour ON →(0.5 hour OFF) cycled for total 1,000 + 48 / - 0 hours (4) Measuring resistance 1 hour after test
Load Life	Δ R: \pm (5.0%+ 0.1 Ω) Without distinct damage in appearance	Max. 100mΩ	 (1) Test temperature: 70 ± 2°C (2) Applied Voltage: rated voltage (3) Test period: (1.5 hour ON) →(0.5 hour OFF) cycled for total 1,000 + 48 / - 0 hours (4) Measuring resistance 1 hour after test
Low Temperature Store	Δ R: \pm (5.0%+ 0.1 Ω) Without distinct damage in appearance	Max. 100mΩ	 (1) Store temperature: -55 ± 3°C for total 1,000 + 48 / - 0 hours (2) Measuring resistance 1 hour after test
High Temperature Store s	\triangle R: \pm (5.0%+ 0.1 Ω) Without distinct damage in appearance	Max. 100mΩ	 (1) Store temperature: +125 ± 2°C for total 1,000 + 48 / - 0 hours (2) Measuring resistance 1 hour after test

REVISION: A1

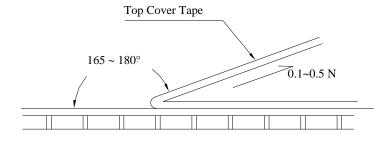

Recommend Land Pattern Dimensions:

А	0.15 ~ 0.20
В	0.5 ~ 0.8
С	0.2 ~0.4


Unit: mm

TAPE PACKAGING DIMENSIONS:

REEL DIMENSIONS:


Numbers of Taping: 20,000 pieces/reel

The following items shall be marked on the reel.

- (1) Type designation.
- (2) Quantity
- (3) Manufacturing date code
- (4) Manufacturer's name

Peel force of top cover tape

The peel speed shall be about 300 mm/min. The peel force of top cover tape shall be between 0.1 to 0.5 N.

Care Note:

Care note for storage

- (1) Chip resistor shall be stored in a room where temperature and humidity must be controlled. (temperature 5 to 35°C, humidity 45 to 85% RH) However, a humidity keep it low, as it is possible.
- (2) Chip resistor shall be stored as direct sunshine doesn't hit on it.
- (3) Chip resistor shall be stored with no moisture, dust, a material that will make solderability inferior, and a harmful gas (Hydrogen chloride, sulfurous acid gas, and Hydrogen sulfide)

Care note for operating and handling

- (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
- (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
- (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
- (5) Observe Limiting element voltage and maximum overload voltage specified in each specification.
- (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.